

Efecto de la concentración de ZrO₂ en las propiedades de captura de materiales basados en Li₂ZrO₃ dopado con K

Peltzer, Diana; Múnera John; Cornaglia Laura*

Instituto de Investigaciones en Catálisis y Petroquímica-INCAPE (FIQ UNL-CONICET) Santa Fe Capital, Argentina. lmcornag@fiq.unl.edu.ar

Palabras Claves: captura de CO₂, ZrO₂, Li₂ZrO₃, DRX

Resumen

Se sintetizaron sorbentes para la captura de CO₂ basados en Li₂ZrO₃ dopado con K, con un exceso molar porcentual de circonia de 16, 25, 35 y 45, respectivamente. Mediante difracción de rayos X se observaron las fases t-Li₂ZrO₃ y m-ZrO₂. A partir de los principales picos de DRX, se calculó la proporción Li₂ZrO₃/ZrO₂, la cual disminuyó conforme aumentó el exceso de circonia. Todas las muestras alcanzaron valores de captura cercanos a su máximo teórico con 60 minutos de reacción a 500 °C y 50% de CO₂. Al disminuir el tiempo de reacción a 30 minutos, las muestras con mayor exceso de ZrO₂ presentaron capacidad de captura, lo que implicaría un efecto benéfico de la presencia de ZrO₂ como dispersante de la fase Li₂ZrO₃, aumentando su reactividad.

Abstract

K-doped Li₂ZrO₃ based sorbents for CO₂ capture at high temperature were synthesized using 16, 25, 35, and 45 % molar excess of ZrO₂. The presence of t-Li₂ZrO₃ y m-ZrO₂ phases was confirmed through XRD analysis. Moreover, the Li₂ZrO₃/ZrO₂ intensity ratio, calculated from the main XRD peaks decreased in the samples with higher zirconia excess. All the solids reached capture values near their theoretical maximum capture capacity in 60 minutes of reaction at 500 °C with 50% CO₂. However, the samples with higher ZrO₂ contents increased their capture capacity at lower reaction times (30 minutes), which could indicate a promoting effect of ZrO₂ in the reactivity of Li₂ZrO₃ species.

Introducción

El calentamiento global es una de las principales amenazas que enfrenta la civilización actual, y ha conducido a la aplicación de distintas estrategias de adaptación y mitigación. En este contexto, la captura de CO_2 es una alternativa para reducir la huella de carbono de los combustibles fósiles, mientras se produce la transición a energías más limpias. Para tal fin, se han desarrollado distintas tecnologías, entre las que se encuentra la captura de CO_2 a alta temperatura, adaptable a sistemas industriales de producción de energía. Idealmente, los sorbentes para captura de CO_2 deben presentar elevada velocidad y capacidad de sorción, y ser estables en ciclos consecutivos de captura/regeneración. Dadas sus buenas propiedades, los cerámicos de metales alcalinos resultan una opción atractiva para este fin. Particularmente, los materiales basados en Li₂ZrO₃ poseen una elevada capacidad de captura y composición de estos sólidos podrían tener un impacto positivo en sus propiedades cinéticas y estabilidad [1]. Por lo tanto, en el presente trabajo se propone estudiar el efecto del agregado de distintas concentraciones de ZrO₂ en las propiedades de captura de materiales basados en Li₂ZrO₃ dopado con K.

Experimental

Síntesis de los materiales

Los materiales fueron sintetizados mediante impregnación húmeda de carbonatos de litio y potasio en nanopartículas de circonia. Específicamente, se disolvieron los carbonatos de metales alcalinos en una solución ácido acético glacial y se agregó luego una suspensión de nanopartículas de circonia (Nyacol® ZRO2-AC). Se mantuvo la suspensión bajo agitación constante a 70 °C hasta la obtención de una espuma firme y se llevó a estufa a 80 °C hasta secado total. Finalmente, se calcinó en flujo de aire a 650 °C por 6 horas (rampa de temperatura de 1,8 °C min⁻¹⁾. Las relaciones molares K₂CO₃:Li₂CO₃:ZrO₂, la nomenclatura y las capacidades teóricas de captura se especifican en la tabla 1.

Muestra	Composición	exceso	Capacidad de captura	-
	elemental K:Li:Zr	molar de	teórica (g CO ₂ .g mat ⁻¹)	Caracterización estructural
		$ZrO_2(\%)$		Para la obtención de los
KLiZr_a	0,044:1.68:1	16	0,25	difractogramas se utilizó un
KLiZr_b	0,032:1,57:1	25	0,23	equipo PANalytican Empyrean
KLiZr_c	0,029:1,45:1	35	0,21	con radiación Cu Kα, trabajando
KLiZr_d	0.026:1.38:1	45	0,19	con un voltaje de 45 kV y una
				corriente de 45 mA.

Tabla 1: Composición y capacidad teórica de captura teórica de los sorbentes.

La capacidad de captura de los materiales se evaluó en un reactor de lecho fijo convencional. El sistema fue alimentado con 50% CO₂ equilibrados con N₂ durante 1 hora a 500 °C, y con N₂ puro durante los procesos de desorción (rampa de 500 °C a 700°C, 10 °C. min⁻¹.), regeneración (15 min. 700 °C) y enfriamiento a 500 °C. Durante la desorción, los gases de salida ingresaron a un reactor de lecho fijo para su metanación, utilizando un catalizador comercial de níquel, alimentando a éste una corriente de H₂ de 35 mL. min⁻¹. La corriente de salida fue analizada en un cromatógrafo FID (Shimadzu GC-8^a) conectado en línea. Las capacidades de captura fueron calculadas mediante la siguiente ecuación:

$$g CO_2/g mat. = \frac{A \times PM CO_2}{F \times M.muestra}$$

donde A es el área de la señal obtenida por cromatografía, PM CO₂ es el peso molecular del CO₂, F es el factor de calibración del cromatógrafo, y M.muestra es la masa de la muestra colocada en el reactor.

Resultados y discusión

La estructura de los materiales fue analizada mediante DRX (Figura 1). Las cuatro muestras presentaron picos correspondientes a t-Li₂ZrO₃ y m-ZrO₂, confirmando la formación de la fase activa para captura y la presencia de un exceso de circonia. Adicionalmente, m-Li₂CO₃ podría estar presente,

aunque no puede ser confirmado debido al solapamiento con picos correspondientes a m-ZrO₂. Los resultados muestran un decrecimiento de la fase t-Li₂ZrO₃ a medida que aumenta el exceso de circonia en las muestras. Esta tendencia puede visualizarse más claramente a partir del cálculo del cociente de áreas del pico principal de t-Li₂ZrO₃ a 42,6 ° y uno de los principales picos de la fase m-ZrO₂ a 30,5 ° (Tabla 2).

A fin de analizar el efecto del exceso de circonia en las propiedades de captura, se evaluaron los sólidos en reacción durante 30 o 60 minutos a 500 °C con 50% de CO₂. En la Tabla 2 se muestran las capacidades de captura y los porcentajes respecto a la capacidad máxima de cada material. Todos los

sólidos presentaron buena capacidad de captura con 60 minutos de reacción, alcanzando alrededor del

90% de su capacidad máxima. Sin embargo, se observaron diferencias más notorias entre las muestras con 30 minutos de reacción. En este caso, las muestras con mayor exceso de de ZrO₂ aumentaron la capacidad captura, lo _ cual estaría relacionado con una mayor velocidad de reacción. Este comportamiento podría asociarse al efecto de la circonia como agente dispersante, evitando la aglomeración de las partículas de Li₂ZrO₃ aumentando su * calculada a partir del área de los picos DRX a 30 ° (ZrO₂) reactividad [2]. Estudios de la morfología y 42,5 ° (Li₂ZrO₃)

Tabla 2: Capacidades de captura y relación de áreas

Muestra	I _{ZrO3=} /I _{ZrO2} *	Capacidad de captura (g CO ₂ .g mat ⁻¹)	
		30 minutos	60 minutos
KLiZr_a	2,21	0,14 (56%)	0,22 (91%)
KLiZr_b	1,91	0,13 (58%)	0,20 (90%)
KLiZr_c	1,35	0,15 (72%)	0,19 (91%)
KLiZr_d	0,90	0,17 (87%)	0,18 (93%)

utilizando microscopía SEM podrían contribuir al análisis de este efecto.

Conclusiones

Se sintetizaron materiales basados en Li_2ZrO_3 dopado con K, con distintos porcentajes de ZrO_2 . Se observó que un aumento en la proporción de circonia en las muestras favorece la velocidad de captura. Este fenómeno podría estar asociado a una mejor dispersión del Li₂ZrO₃ en la matriz de ZrO₂, aumentando la reactividad de dichas partículas.

Referencias

[1] D. Peltzer, J. Múnera, L. Cornaglia, RSC Adv., 6 (2016) 8222-8231.

[2] E. Ochoa-Fernandez, M. Ronning, X. Yu, T. Grande, D. Chen, Ind. Eng. Chem. Res. 47 (2008) 434–442.