
XXII Congreso Argentino de Catálisis

La Plata, Argentina 16-18 de Marzo 2022

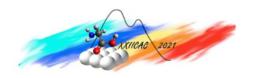
Estudio teórico de la adsorción de especies NO_x en CeO₂ con defectos de diferentes dimensionalidad y estados de carga.

Reimers Walter G.¹, Luna C. Romina¹, Gaztañaga Francisco¹, Jasen Paula¹, Brizuela Graciela^{1*}

1 Dpto. de Física, Universidad Nacional del Sur, IFISUR, Av. Alem 1253, 8000, Bahía Blanca, Buenos Aires, Argentina.

Palabras Claves: DFT, Vacancia Cargada, Momento Magnético, Banda Prohibida.

Resumen


En este trabajo se estudia, mediante el uso métodos computacionales ab-initio basados en la teoría DFT, la adsorción de especies NO_x (x=1, 2) sobre CeO₂ con defectos de diferente dimensionalidad. Particularmente, se estudian vacancias de oxigeno (VO) con estado de carga q (q = 0, 2+) en la superficie CeO₂ (111); y defecto tipo "escalón", modelado por el corte (331) de CeO₂. Los resultados muestran que la presencia de defectos reduce el ancho de banda prohibida y produce un aumento en el momento magnético respecto a la superficie prístina. La vacancia positiva de oxigeno mejora la adsorción de NO, mientras que la presencia de defectos no lleva, desde un punto de vista energético, a una mejora en la adsorción de NO₂. Sin embargo, en todos los casos estudiados, se observa una reducción en el ancho de banda prohibida y un aumento del valor del momento magnético luego de la adsorción de NO_x. Por ello se propone CeO₂ como sensor de gas de NO_x, ya que el ancho de banda prohibida y momento magnético pueden ser modulados por el tipo de especie NO_x adsorbida y el tipo de defecto presente en la superficie.

Abstract

This work presents an investigation of NO_x adsorption (x = 1, 2) on CeO_2 with defects of different dimensionality. The study is performed by ab-initio computational methods based on the DFT theory. The point defect is modeled by an oxygen vacancy (VO) with state of charge q (q = 0, 2+) on the CeO_2 surface (111); the linear defect is modeled by the (331) plane of CeO_2 . The defects, with respect to the pristine surface, reduce the bandgap value and they induce an increase in the magnetic moment. The positive oxygen vacancy improves the adsorption of NO_2 , while the presence of defects, from the energetic point of view, does not improve the adsorption of NO_2 . Nevertheless, in all studied cases, a reduction in the bandgap value and an increase in the magnetic moment are observed after NO_x adsorption. For this reason, CeO_2 is proposed as a NO_x sensor, because the band gap and magnetic moment can be modulated depending of the type on NO_x species adsorbed and the defect type present on the surface.

^{*} gbrizuela@uns.edu.ar

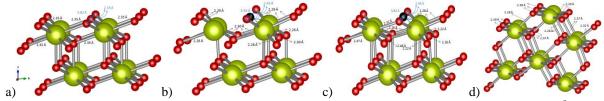
XXII Congreso Argentino de Catálisis

La Plata, Argentina 16-18 de Marzo 2022

Introducción

El óxido de cerio (CeO_2) es un óxido de tierras raras muy estudiado en las últimas décadas debido a sus propiedades catalíticas y por su utilización como material de soporte, el cual mejora la actividad y selectividad del ciertos catalizadores [1]. Una de las aplicaciones más estudiadas, es el uso de CeO_2 como removedor de gases contaminantes derivados de la combustión diesel, tales como especies NO_x , debido a la alta capacidad de CeO_2 de almacenar oxígeno [2].

Las propiedades electrónicas y ópticas de CeO₂ están gobernadas por los defectos, los cuales pueden ser, por ejemplo, puntuales - i.e. vacancias- o lineales. Estos defectos son sitios activos para la adsorción de átomos o moléculas sobre la superficie de CeO₂ [3]. El estudio de la superficie de CeO₂ con defectos se considera un factor crucial para el entendimiento de la interacción sinérgica en el uso de ésta en el área de catálisis.


En este trabajo se consideran defectos puntuales tipo vacancia, y por el otro, defectos lineales. En el caso de las vacancias, se estudian las de oxígeno en CeO₂ (111), ya que dicho plano es el que presenta más bloqueo a su migración, debido a su alta rigidez mecánica, respecto a otros cortes [4]. Particularmente, en este plano, se consideran vacancias de oxígeno (VO) con estado de carga q (q=0 y 2+), ya que son las que poseen menor energía de formación frente a otro tipo de vacancias. Para el estudio de defectos lineales tipo "escalón", se considera el corte CeO₂ (331).

Metodología

Para la realización de este trabajo se hizo un estudio DFT con espín polarizados implementado por el paquete VASP [5]. Se consideraron dos cortes de la superficie de CeO₂, el (111) y el (331). En el primero de ellos se considera VO^q (q=0 y 2+), el estado de carga 2+ se simula quitando dos e al sistema en el sitio donde se ha generado la vacancia. Cada superficie consta de 6 capas, dejando fijas las tres capas internas. Se consideró la corrección de DFT+U, donde el U_{ef} para Ce considerado es de 5 eV. Los parámetros de red para CeO₂ (111) son a=7.64 Å, b= 7.64 Å, c= 19.35 Å y γ =120°; mientras que para CeO₂ (331) son a=7.64 Å, b= 8.54 Å, c= 19.27 Å y γ =103°. La energía de corte que asegura la convergencia es de 415 eV, y la grilla de puntos k es de 11x11x1. En la Figura 1 se muestran las superficies optimizadas. Para la adsorción de NO y NO₂ se evaluaron diferentes sitios y orientaciones de éstas moléculas sobre cada superficie. La energía de adsorción (E_{ads}) se calcula utilizando la siguiente ecuación:

 $E_{ads} = E(sup + NO_x) - E(sup) - E(NO_x)$

donde $E(sup+NO_x)$, E(sup) y $E(NO_x)$ son las energías de la superficie con NO_x adsorbida, de la superficie sin NO_x y de la molécula NO_x aislada, respectivamente.

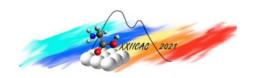
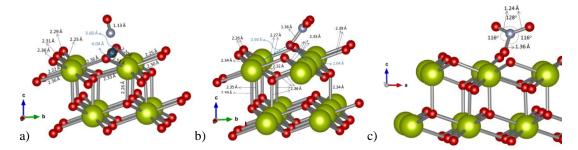


Figura 1. Estructuras optimizadas para cada superficie considerada: $CeO_2(111)$ a) prístina, b) con VO^0 , c) con VO^{2+} y d) CeO_2 (331).

Resultados y discusión

Se puede notar que la incorporación de vacancias de oxígeno en CeO₂ (111) reduce el ancho de banda prohibida respecto a la superficie prístina; un 57 % y 23 % en el caso de la vacancia neutra y positiva, respectivamente (ver Tabla 1). Mientras, que se observa un aumento en el momento magnético debido a la presencia de VO^q.

XXII Congreso Argentino de Catálisis


La Plata, Argentina 16-18 de Marzo 2022

La molécula de NO se adsorbe favorablemente, según los valores calculados de E_{ads} , en el siguiente orden: CeO_2 (111)+ VO^{2+} , CeO_2 (111), CeO_2 (111)+ VO^0 y CeO_2 (331). Con lo cual podemos concluir que solo la adsorción de NO sobre CeO_2 (111) conteniendo vacancia positiva de oxígeno es un proceso endotérmico (ver Figura 2-a). Por otro lado se observa, luego de la adsorción de NO, una reducción el valor de E_{gap} , excepto para CeO_2 (111)+ VO^0 .

Finalmente, los resultados muestran que energéticamente la adsorción de NO_2 es favorable sobre CeO_2 (111) sin defectos, con un valor de E_{ads} de -3.06 eV y la formación de NO_3 (ver Figura 2-b y -c). La adsorción de NO_2 sobre las superficies consideradas se da en el siguiente orden: CeO_2 (111), CeO_2 (111)+ VO^{2+} , CeO_2 (331) y CeO_2 (111)+ VO^{0-} . En todas las situaciones estudiadas se observa una reducción en al ancho de banda prohibida respecto a las superficies sin NO_2 adsorbida (ver Tabla 1). Después de la adsorción de NO_x se observa un incremento en el valor del momento magnetico en todas la superficies consideradas (ver Tabla 1).

Tabla 1:Energía de adsorción (E_{ads}) de la molécula NO_x , ancho de banda prohibida (E_{gap}) y momento magnético (μ) antes y después de la adsorción de NO_x .

	Superficies Pristinas				NO				NO ₂			
	(111)	VO ⁰	VO^{2+}	(331)	(111)	VO ⁰	VO ²⁺	(331)	(111)	VO ⁰	VO ²⁺	(331)
E _{ads} (eV)	-	-	-	-	0.05	1.35	-0.95	6.10	-3.06	3.70	-0.22	0.50
E _{gap} (eV)	2.21	0.94	1.71	2.06	1.04	2.36	0.74	0.62	2.00	0.21	1.69	0.41
μ (μ _B)	0.1	0.9	0.8	0.1	1.0	5.3	1.0	1.1	1.0	1.2	1.0	1.0

Figura 2. Geometrías optimizadas luego de la adsorción de a) NO en CeO₂ (111)+VO²⁺, b) NO₂ en CeO₂(111). c) Se presenta otra vista de la adsorción de NO₂ en CeO₂(111).

Conclusiones

A partir de los resultados obtenidos se puede concluir que la vacancia positiva en CeO₂ (111) mejora la adsorción de NO. Mientras que la adsorción de NO₂ es favorable en la superficie de CeO₂ (111), donde se obtuvo la formación de NO₃. Tanto el ancho de banda prohibida, como el momento magnético, de las superficies son sensibles a la adsorción de la especie NO_x y al tipo de defecto. Por tal motivo, proponemos CeO₂ como sensor de especies NO_x y no como catalizador, debido a la formación de nuevas especies NO_x.

Referencias

- [1] J. Paier, C. Penschke, J. Sauer; Chem. Rev. 113 (2013) 3949–3985.
- [2] Z. Zhou, J. Lan, L. Liu, Z. Liu; Catal. Commun. 149 (2021) 106230.
- [3] N. Nilius, M. Sterrer, M. Heyde, H-J. Freund; Defects at Oxide Surfaces, Springer (2015) 29-80.
- [4] D. C. Sayle, S. A. Maicaneanu, G. W. Watson; J. Am. Chem. Soc. 124 (2002) 11429-11439. -
- [5] https://www.vasp.at/