
▪ H2O dissociates at the Ni-CeO2 interface through a virtually

barrierless process: monodentate hydroxyl (OHm) + dissociated proton

on lattice oxygen (Hs).

▪ Dissociation of H2O on Ni13.t does not involve lattice oxygen: bidentate

hydroxyl (OHt) + H atom on the cluster, Ea = 0.79 eV.

For comparison:

▪ On Ni(111): significantly less exothermic (ΔE=−0.41 eV) and hindered

by a high barrier of 0.90–1.11 eV.

▪ On non-defective CeO2(111): no true dissociation occurs. The molecular

state coexists with a OH-pair-like configuration that easily recombines

and desorbs at reaction temperature.

In summary: H2O will dissociate preferentially over the Ni-CeO2

interface, undergoing barrierless activation and easily producing adsorbed

OH groups.
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CH4 adsorption

Stronger on both interfacial Ni13.i and terrace Ni13.t sites by ~0.2 eV,

compared with Ni(111).

Ni(dxz) states of the cluster become less occupied upon adsorption on

ceria:

▪ Reduced Pauli repulsion to methane’s frontier orbital → shorter C–Ni

distance.

▪ Pre-activation of the C–H bond pointing towards the surface, increasing

its bond length.

CHx dehydrogenation

The pre-activation of CH4 lowers its first dehydrogenation barrier: 0.34 eV

at Ni13.i (Ni0.55+) and 0.36 eV at Ni13.t (Ni0), compared with 0.90 eV on

Ni(111).

Further dehydrogenation steps (CH3 → CH2 → CH → C) also show

relatively low barriers.

Reasons for the enhanced activity

▪ Metal-support interactions: change in the cluster’s electronic structure.

▪ Higher local fluxionality: stronger CH4–Ni stabilizing interactions and

lower activation barriers.

In summary: CH4 dehydrogenation to C proceeds with Ea ≤ 0.72 eV on

the supported Ni13 cluster.
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▪ Model: Ni13 cluster adsorbed on

CeO2(111) with (3×3) periodicity.

▪ 2 O–Ce–O trilayers (TL), 12 Å

thick vacuum-layer.

▪ DFT+U calculations (VASP code).

▪ GGA-PBE xc functional.

▪ Ueff = 4.5 eV for Ce(4f) states.

▪ Cutoff energy of 415 eV.

▪ PAW method for core electrons.

▪ DFT-D3(ZD) approach for long-

range dispersion corrections.

▪ Full relaxation of the Ni cluster and

the uppermost CeO2 TL. Forces

converged to 0.02 eV/Å.

▪ Transition state (TS) structures

located using the climbing image

NEB method.

Methane steam reforming (MSR)

CH4 + H2O ⇄ 3H2 + CO

Typical applications:

▪ Large-scale industrial H2

production.

▪ 800–1000 °C, 4–20 atm, H2O/CH4

ratio of ~2.5.

Fuel cell applications:

▪ Ambient pressure operation favors

reaction thermodynamics, allowing

mild operating temperature and

H2O/CH4 ratio close to 1.

▪ Novel catalysts are required to

carry out the reaction at milder

conditions.

Low-loaded Ni/CeO2 catalyst:

▪ Strong metal-support interactions.

▪ Room temperature CH4 activation.

▪ Resistance to coke poisoning.

▪ Excellent MSR performance at 600

°C and 1 bar.

Challenge:

Deeper understanding of the reaction

mechanism, to allow the rational

design of enhanced Ni/CeO2-based

catalysts.

Here we present a density functional

theory (DFT) study of MSR on

model Ni/CeO2(111) catalysts.

▪ CH4 → C dehydrogenation promoted by the fluxionality and

electronic structure of the cluster, Ea ≤ 0.72 eV.

▪ H2O barrierless dissociation over the Ni-CeO2 interface.

▪ MSR reaction pathway with barriers under 0.9 eV via the

formation of a COH intermediate from chemisorbed C + OH,

preventing deactivation due to carbon deposition.

▪ H2O facilitates the removal of H adsorbed on the support.

▪ Perspective: both CH4 and H2O activation steps occur very easily on

low-loaded Ni/CeO2, and therefore the goal should be to modify this

catalyst to lower the barriers involved in CO formation.

1) Mars-van Krevelen redox cycle

C + Os (surface lattice oxygen). Very high barrier of 2.17 eV.

2) C+O chemisorbed on Ni

O species chemisorbed on Ni:

▪ From water (blue pathway): OHm migrates to a bidentate position OHb

(I→II) and dissociates into O+H (II→III), with high barrier of 1.33 eV.

▪ Via oxygen reverse spillover (red pathway): Os migrates to Ni leaving

behind an O vacancy on CeO2 (IV), with Ea=0.77 eV. H2O is

barrierlessly activated at the vacancy site, forming two Hs groups (V).

Hs migrates to the Ni cluster to reach the O+H+Hs state (V→III):

Ea=1.00 eV.

In summary: O species chemisorbed on the Ni cluster are difficult to

form and would not be easily available.

2) C+OH chemisorbed on Ni

OH groups are readily available from H2O dissociation. C+OH produces

the COH intermediate with Ea=0.89 eV.

These results lead us to propose a reaction pathway to produce CO via

the direct reaction of C with OH groups through a COH intermediate.

In a final step, CO and H2 must desorb to close the catalytic cycle.

▪ H2 is easily formed from H species on Ni13 (Ea= 0.62 eV).

▪ Hs species: their migration to the Ni cluster is assisted by water

dissociated on Ni13.t, providing a pathway with Ea= 0.75 eV.

 

 
 


