Coke-free methane steam reforming on Ni-ceria catalysts: active sites and reaction pathway

Agustín Salcedo^{1,2,3*}, Pablo G. Lustemberg^{4,5}, M. Verónica Ganduglia-Pirovano⁴, Beatriz Irigoyen^{2,3}

¹Laboratoire de Chimie (CNRS UMR 5182), École Normal Supérieure de Lyon, 69364 Lyon, France ²Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), C1428EGA Buenos Aires, Argentina ³Instituto de Tecnologías de Hidrógeno y Energías Sostenibles (ITHES, CONICET-UBA), C1428EGA Buenos Aires, Argentina ⁴Instituto de Catálisis y Petroleoquímica (ICP-CSIC), 28049 Madrid, Spain ⁵Instituto de Física Rosario (IFIR-CONICET) and Universidad Nacional de Rosario (UNR), S2000EKF Rosario, Santa Fe, Argentina

*asalcedo@fi.uba.ar

INST. DE TECNOLOGIAS DEL HIDROGENO Y

Introduction

Methane steam reforming (MSR) $CH_4 + H_2O \rightleftharpoons 3H_2 + CO$

Typical applications:

- industrial H_2 Large-scale production.
- 800–1000 °C, 4–20 atm, H₂O/CH₄ ratio of ~2.5.

Fuel cell applications:

CH^₄ activation and dehydrogenation

CH₄ adsorption

Stronger on both interfacial Ni₁₃.i and terrace Ni₁₃.t sites by ~0.2 eV, compared with Ni(111).

 $Ni(d_{xz})$ states of the cluster become less occupied upon adsorption on ceria:

CO formation and carbon removal

1) Mars-van Krevelen redox cycle

 $C + O_s$ (surface lattice oxygen). Very high barrier of 2.17 eV.

- Ambient pressure operation favors reaction thermodynamics, allowing mild operating temperature and H_2O/CH_4 ratio close to 1.
- Novel catalysts are required to carry out the reaction at milder conditions.

Low-loaded Ni/CeO₂ catalyst:

- Strong metal-support interactions.
- Room temperature CH₄ activation.
- Resistance to coke poisoning.
- Excellent MSR performance at 600 °C and 1 bar.

Challenge:

Deeper understanding of the reaction mechanism, to allow the rational design of enhanced Ni/CeO2-based catalysts.

Here we present a **density functional** theory (DFT) study of MSR on model Ni/CeO $_2(111)$ catalysts.

Methods

- Reduced Pauli repulsion to methane's frontier orbital \rightarrow shorter C–Ni distance.
- Pre-activation of the C–H bond pointing towards the surface, increasing its bond length.

CH_x dehydrogenation

The pre-activation of CH_4 lowers its first dehydrogenation barrier: 0.34 eV at Ni₁₃.i (Ni^{0.55+}) and 0.36 eV at Ni₁₃.t (Ni⁰), compared with 0.90 eV on Ni(111).

Further dehydrogenation steps ($CH_3 \rightarrow CH_2 \rightarrow CH \rightarrow C$) also show relatively low barriers.

Reasons for the enhanced activity

$\mathbf{s}^{\mathbf{c}}$

2) C+O chemisorbed on Ni

O species chemisorbed on Ni:

- From water (blue pathway): OH_m migrates to a bidentate position OH_b $(I \rightarrow II)$ and dissociates into O+H (II \rightarrow III), with high barrier of 1.33 eV.
- Via oxygen reverse spillover (**red pathway**): O_s migrates to Ni leaving behind an O vacancy on CeO₂ (IV), with $E_a=0.77$ eV. H₂O is barrierlessly activated at the vacancy site, forming two H_s groups (V). H_s migrates to the Ni cluster to reach the O+H+H_s state (V \rightarrow III): $E_{\rm a}$ =1.00 eV.

In summary: O species chemisorbed on the Ni cluster are difficult to form and would not be easily available.

• Model: Ni₁₃ cluster adsorbed on $CeO_2(111)$ with (3×3) periodicity.

- 2 O–Ce–O trilayers (TL), 12 Å thick vacuum-layer.
- DFT+U calculations (VASP code).
- GGA-PBE *xc* functional.
- $U_{\text{eff}} = 4.5 \text{ eV}$ for Ce(4f) states.
- Cutoff energy of 415 eV.
- PAW method for core electrons.
- DFT-D3(ZD) approach for longrange dispersion corrections.
- Full relaxation of the Ni cluster and the uppermost CeO_2 TL. Forces converged to 0.02 eV/Å.
- Transition state (TS) structures located using the climbing image NEB method.

Acknowledgments

- Metal-support interactions: change in the cluster's electronic structure.
- Higher local fluxionality: stronger CH₄–Ni stabilizing interactions and lower activation barriers.

In summary: CH₄ dehydrogenation to C proceeds with $E_a \leq 0.72$ eV on the supported Ni₁₃ cluster.

H₂O dissociative adsorption

- H₂O dissociates at the Ni-CeO₂ interface through a virtually **barrierless process**: monodentate hydroxyl (OH_m) + dissociated proton on lattice oxygen (H_s) .
- Dissociation of H_2O on Ni_{13} .t does not involve lattice oxygen: bidentate hydroxyl (OH_t) + H atom on the cluster, $E_a = 0.79$ eV.

2) C+OH chemisorbed on Ni

OH groups are readily available from H₂O dissociation. C+OH produces the COH intermediate with $E_a=0.89$ eV.

These results lead us to propose a reaction pathway to produce CO via the direct reaction of C with OH groups through a COH intermediate.

In a final step, CO and H_2 must desorb to close the catalytic cycle.

- H₂ is easily formed from H species on Ni₁₃ ($E_a = 0.62 \text{ eV}$).
- H_s species: their migration to the Ni cluster is assisted by water dissociated on Ni₁₃.t, providing a pathway with $E_a = 0.75$ eV.

Computer time:

- RES, at MareNostrum 4 (BSC), Altamira (IFCA) and La Palma (IAC) nodes.
- DECI, at Finis Terrae II (CESGA) with the support from PRACE aislb.
- CSC (CONICET).

A.S. thanks FIUBA for the Peruilh doctoral fellowship.

B.I. acknowledges financial support from UBA (UBACyT-20020190100167BA) and ANPCyT (PICT-2015-2135).

M.V.G.P. thanks the support by MICINN-Spain (RTI2018-101604-B-I00).

This project received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 832121.

For comparison:

- <u>On Ni(111)</u>: significantly less exothermic (ΔE =-0.41 eV) and hindered by a high barrier of 0.90–1.11 eV.
- <u>On non-defective $CeO_2(111)$ </u>: no true dissociation occurs. The molecular state coexists with a OH-pair-like configuration that easily recombines and desorbs at reaction temperature.

In summary: H_2O will dissociate preferentially over the Ni-CeO₂ interface, undergoing barrierless activation and easily producing adsorbed OH groups.

Conclusions

- $CH_4 \rightarrow C$ dehydrogenation promoted by the fluxionality and electronic structure of the cluster, $E_a \leq 0.72$ eV.
- H₂O barrierless dissociation over the Ni-CeO₂ interface.
- MSR reaction pathway with barriers under 0.9 eV via the formation of a COH intermediate from chemisorbed C + OH, preventing deactivation due to carbon deposition.
- H₂O facilitates the removal of H adsorbed on the support.
- <u>Perspective</u>: both CH_4 and H_2O activation steps occur very easily on low-loaded Ni/CeO₂, and therefore the goal should be to modify this catalyst to lower the barriers involved in CO formation.