

Memory Function Representation for the Electrical Conductivity of Solids

Brett R. Green^a, Maria Troppenz^b, Santiago Rigamonti^b, Claudia Draxl^b, Jorge O. Sofo^{a,c},

^a Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.

^b Institut für Physik und Iris Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 6, 12489, Berlin, Germany.

^c Department of Materials Science and Engineering, and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.

email: sofo@psu.edu - http://sites.psu.edu/sofo

We derive an approximate expression for the electrical conductivity of solids that includes relaxation, dissipation, and quantum coherence effects. The derivation is based on the Kubo expression with a Mori memory function approach to include dissipation effects at all orders relaxation interaction. The expression obtained provides a clear understanding of the evolution of the Drude peak and the broadening of optical transitions for all possible perturbation strength. At the same time offers a practical form of evaluating this important transport coefficient with electronic-structure codes without the complications and limitations of supercell calculations or assumptions about the lost of coherence.