

XXII CONGRESO ARGENTINO DE FISICOQUÍMICA Y QUÍMICA INORGÁNICA LA PLATA 2021

RANKEO DE LA CAPACIDAD ELECTROCATALÍTICA DE ELECTRODOS DE ÁREA EXPANDIDA BASADOS EN OXIDO DE GRAFENO (GO) MEDIANTE IMPEDANCIA ELECTROQUÍMICA

<u>Valenti Romina V.</u>, Gutiérrez Pineda Eduart A., Rodríguez Presa María José y Gervasi Claudio A.

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Sucursal 4, CC 16 (1900) La Plata; Area Electroquìmica, Fac. Ing., UNLP, 49 y 115 La Plata. rvalenti@inifta.unlp.edu.ar

Desarrollo

En este trabajo se realizó la síntesis electroquímica de GO a partir de barras de grafito, empleando etapas sucesivas de intercalación y exfoliación electroquímica en H_2SO_4 de distinta concentración. Se ensayaron diferentes condiciones de potencial de intercalación y de exfoliación y tiempo de aplicación para cada etapa. Se modificaron electrodos de carbón vítreo con la técnica de "drop casting", empleando suspensiones de GO en agua de 1 mg/mL. Para evaluar la actividad electroquímica de los electrodos modificados se utilizó la cupla ferrocianuro-ferricianuro como par redox testigo y las técnicas de voltamperometría cíclica y espectroscopía de impedancia electroquímica. Se propone un novedoso y simple análisis cualitativo, que permite una rápida y precisa categorización de muestras según su capacidad electrocatalítica. La misma se basa en la variación de la posición y altura del máximo de la fase (ϕ) del vector impedancia en un gráfico ϕ vs. logaritmo de la frecuencia. Se contrastan estos resultados con los análisis voltamperométricos en términos de la diferencia de potenciales de pico (ΔEp) y se discuten las mejoras del método propuesto en cuanto a precisión y simpleza.

Resultados

Figura 1: Micrografia TEM material grafenico exfoliado 1d, 1b, 2a, 3c, 3d.

Figura 3: Espectroscopía XPS (C 1s) exp. 1d, 2a, 2d, 3a, 3b, 3c, 3d.

Figura 5-c: Circuito equivalente utilizado para el ajuste EIS

Figura 2: Espectroscopía Raman banda G, D y 2D

INIFTA

UNL

P NANOTECNOLOGIA

Exp.	I _D /I _G	I _{2D} /I _G	C/O	[H ₂ SO ₄]	Pot.Inter. (V)	Pot.Exf. (V)	
Grafito	0,379	0,365	-	-	-	-	
1_d	0,838	0,232	1,96	0,05	2	3,5	
2_ a	0,823	0,234	3,02	0,1	1,5	3,5	
2_d	0,652	0,256	4,09	0,1	2	3,5	
3_a	0,903	0,195	3,38	0,5	1,5	3	
3_b	0,753	0,217	3,37	0,5	1,5	3,5	Tabla 1: Parámetros
3_c	0,911	0,230	4,29	0,5	2	3	extraídos de la caracterización Raman y
3_d	0,901	0,211	1,84	0,5	2	3,5	XPS.
	Exp. Grafito 1_d 2_a 2_d 3_a 3_b 3_b 3_c 3_c	Exp.Ip/IgGrafito0,3791_d0,8382_a0,8232_d0,6523_a0,9033_b0,7533_c0,9113_d0,901	Exp.I_D/I_GI_2D/I_GGrafito0,37990,36551_d0,83880,23222_a0,82330,23442_d0,65520,25663_a0,90330,19553_b0,75330,21773_c0,90110,23003_d0,90110,2111	Exp.I_D/IGI_2D/IGC/OGrafito0,3790,3655-1_d0,83880,23221,9662_a0,82330,23443,0222_d0,65220,25664,0993_a0,90330,19553,3883_b0,75330,21773,3773_c0,90110,23004,2993_d0,90110,21111,844	Exp.I_D/IGI_2D/IGC/O[H2SO4]Grafito0,3790,36551_d0,8380,2321,960,052_a0,8230,2343,020,12_d0,6520,2564,090,13_a0,9030,1953,380,53_b0,7530,2173,370,53_d0,9010,2304,290,53_d0,9010,2111,840,5	Exp.ID/IGI2D/IGC/O[H2SO4]Pot.Inter. (V)Grafito0,3790,3651_d0,8380,2321,960,05522_a0,8230,2343,020,111,52_d0,6520,2564,090,123_a0,9030,1953,380,51,53_b0,7530,2173,370,51,53_d0,9010,2104,290,52	Exp. I_{b}/I_{G} I_{2b}/I_{G} C/O $[H_2SO_4]$ Pot.Inter. (V)Pot.Exf. (V)Grafito0,3790,3651_d0,8380,2321,960,05523,522_a0,8230,2343,020,111,553,532_d0,6520,2564,090,1123,553_a0,9030,1953,380,551,5533_b0,7530,2173,370,551,553,553_c0,9010,2104,290,5523,553_d0,9010,2111,840,5523,55

CONCLUSIONES

Se obtuvieron materiales grafénicos mediante una estrategia simple, económica y amigable con el ambiente. Los mismos no mostraron poseer mejor actividad electrocatalítica frente a la cupla ferro-ferricianuro respecto del carbón vítreo.
Se observó un incremento de los grupos funcionales oxigenados con el aumento de la concentración de ácido y condiciones más fuertes de exfoliación.
El análisis cualitativo propuesto a partir de la impedancia electroquímica nos permitió la selección de las mejores condiciones de síntesis de GO, como material precursor del

Figura 5-a: Espectroscopía de Impedancia Electroquímica - Bode

Figura 5-b: EIS - Nyquist

Exp.	ΔE (mV)	R _{ct} (Ω.cm²)	ф _{max} (°)	f(Hz)
blanco	76	341,39	28,01	609,51
1_d	73	2916,7	47,95	5,42
2_ a	88	1002,3	43,95	1,12
2_d	76	3869,9	45,97	0,82
3_a	120	3366	37,05	10,18
3_b	81	2570,8	44,83	5,42
3_c	78	6137,6	48,52	1,54
3_d	93	1667,7	42,55	13,86

Tabla 2: Parámetros extraídos de la caracterización electroquímica. ERGO, para futuras aplicaciones.

