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regression and classification
regression in ML: 
estimation of a continuous 
variable, y, from data x in a 
training set
examples: linear, kernel, 
Gaussian Process

classification in ML: 
estimation of a  categorical 
variable, y, from data x in a 
training set
examples: k-nn, logistic, 
SVM, trees, random forest
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what is regression?

regression in ML: 
estimation of a continuous 
variable, y, from data x in a 
training set

ex.: photo-z estimation from 
galaxy colors

we need:
loss/cost function l(w): to 
evaluate the quality of model 
fitting

optimizer: find w by 
minimization of the loss 
function

model:   
      y = f(x;w) + ε
w: model parameters
ε: error or noise
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noise:

models do not fit the data perfectly:

model:   y = f(x;w) + ε
ε: error or noise

ε can be due to measurement errors 
in x and/or y

ε can be due to the inadequacy of the 
model (too simple, too complicate)

...

example: ordinary linear regression  

linear model (in the parameters!): 
y = w

0
+w

1
x

parameters: {w
0
,w

1
}

cost/loss function: sum of the 
squares of the residuals

optimization: minimization of the 
least squares

ML main optimizer: gradient descent
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learning/optimization with gradient descent
optimization of the cost/loss l(w):

initialization: random values for w

learning based on the gradient:

update of w:    w ← w – λ ∂l(w)/l(w)/∂l(w)/w

λ: ‘learning rate’learning rate’

for a single datum: 

w ← w + 2λ [yy
i
 – y(x

i
;w)]

[y…] is the residual with the current value 
of the parameters w 

as the training proceeds, it decreases and 
(hopefuly!) converges to a stationary value

optimization strategies:
batch: update w after presentation of all 
data
mini-batch:  update w with n random 
objects
stochastic:  update w after each object
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learning/optimization with gradient descent

example: linear regression
A (semi-major axis)  x  r_auto w ← w + 2λ [yy

i
 – y(x

i
;w)]
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models and generalization

models should have the ‘learning rate’right’ 
complexity (or ‘learning rate’capacity’): 

models too simple: underfitting
models too complex: overfitting

→ the models fit the noise!

example: fitting of a polynomium of 
degree M

the polynomium is fitted with the 
training set and then applied to a test 
set
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models and generalization

what happens for high values of M?

the models fits the noise: w ‘learning rate’explode’!

example: weights for M = 9
30.87,  -1122.61,  13019.71,  -75589.66,  256956.84, 
-544754.35,  730907.60,  -603984.86, 280679.44, -
56144.84

a way to prevent overfitting: ‘learning rate’regularization’ 
it constrains the size of the weigths
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regularization with a new term in the cost function

l(w) = χ2 / 2 + α wT.w

α: regularization parameter

the additional term penalizes large 
absolute values of w

linear model: “ridge  regression”
w = (xTx+αI)-1xTy

gradient descent for a single datum:
w = w + 2λ [yy

i
 – y(x

i
;w) - αw]

LASSO: least absolute shrinkage 
and selection

l(w) = χ2 / 2 + α |w|w|w|

notice that OLS is a particular case 
of ridge regression and LASSO
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kernel regression

K(u): kernel       h: bandwidth

kind of “local regression”: 
weighted mean of y with weights

many variants: locally linear 
regression, locally polynomial 
regression, adaptive kernel

h can be determined by cross-
validation
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Gaussian Process (GP) regression

modeling of functions: 

parametric scenario:    y = f(x;w) + ε
the functional for f is assumed known
regression: estimation of the 
parameters w

functional space scenario:   f ~ GP(μ,k)
f is assumed sampled from a 
“functional space”
regression: estimation of the posterior 
of the values of the functions at the 
points of interest 

Gaussian distribution 
vector sampling: 
               f = {f

1
...f

N
} ~ N(μ,Σ)

GP-  function sampling:
               f(x) ~ GP(m(x),k(x,x’)

GP is a Gaussian process of  mean 
    m = E(f(x))  and 
covariance  k(x,x’)
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GP: f(x) ~ GP(m(x),k(x,x’)

example: radial basis functions

main hyperparameters:
λ controls the horizontal scale
σ controls the vertical scale

problem: matrix inversions α N3

solution: sparse approximation of the data 

(deep GP: a GP that is a function of another GP)



13

cross-validation

estimation of “model errors” and/or of model 
 hyperparameters

simple CV: estimate model reliability with a 
test set

K-fold CV:

data is divided in K+1 subsamples

train K models and let one subsample 
aside to measure their errors

errors in the model can be estimated 
from the median of the errors in each 
subsample

hyperparameters can be chosen by    
K-fold CV plus grid search



Classification
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what is classification?

sample of N objects with D 
features x
objective: to determine the label or 
class of the object

Examples:
Hubble types: E, S0, Sbc…
BPT types: SF, Sey1, LINERs, 
transition
detected/non-detected
Star/galaxy
0/1

the labels are categorical 
variables
the data features can be real or 
categorical
classification: we train a function 
with a training and validation sets
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what is classification?
classification: binary or multiclass

Problems:
classes are often not cleanly 
separable

imbalance in the training set: very 
different numbers of objects in 
each class
→ bias toward the majority class!
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cost functioncost 0/1: we give 0 to a correct 
classification and 1 to a wrong one

If ŷ is the estimate of y:

classification risk (= error rate):
E[yL(y,ŷ)] = prob(y ≠ ŷ)

cross-entropy (multiclass):

mean square error:

binary classification (0,1):
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binary classification: completeness and contamination

detection (1)       non-detection (0)

completeness (recall): fraction of 
detections

contamination: fraction of wrong 
detections

accuracy: fraction of correct detections

error rate (misclassification)

precision (positive predictive value) 
= 1-contamination

F
1
 score: harmonic mean of precision and 

completeness

Depending of the problem we may want to 
optimize the completeness, or the 
accuracy, or the precision...
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Classification with k nearest neighbors (k-NN)
adopt the class of the nearest 
neighbor in the training set

the decision limits between classes 
form a Voronoi Tesselation

non-parametric method

variants:
adopt the most frequent class 
among k nearest neighbors in the 
training set

weight by the neighbor distance

(method sensitive to the definition of 
distance)

k can be obtained by CV
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classification with 
logistic regression

Classification in two classes: 0 or 1
probability of class 1 for a certain 
object:

S(x): sigmoid or logistic function
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classification with 
logistic regression

Classification in two classes: 0 or 1
probability of class 1 for a certain 
object:

S(x): sigmoid or logistic function

cost function:
since y is binary, the cost can be 
modelled as a Bernoulli function:

w is obtained by minimazing l(w), 
i.e., the classification error
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classification with SVM 
support vector machine

margin: hyperplane which maximizes 
the distance to the closest points of 
other classes
the concept applies even when 
different classes overlap each other
points in the margin define the 
support vectors

to reduce contamination in the data 
space, SVM transforms the data to a 
higher dimensional space
this is done using kernels              
(the “kernel trick”)
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classification with SVM 
support vector machine

SVM is less sensitive to imbalance 
than other methods
can achieve high completeness but 
with high contamination
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classification with 
decision trees

decision trees: nodes, branches, leaves

the top node contains all data

at each level of the tree the nodes are divided 
in two (or more) branches

the divisions are based on decision limits: 
values above the limit go to a branch, and 
values below the limit to the other branch

the divisions proceed until  a convergence 
criterion is achieved

the terminal nodes- leaves- register the 
fraction  of data points within each class

classification of a leave: majoritary class

classification of a new datum: follow the 
branches through binary decisions until 
arriving in a leave
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classification with 
decision trees

complexity of the tree: number of levels, or 
depth

controling the tree growth may be necessary 
to avoid overfitting

tree pruning: use CV to remove nodes that 
do not contribute much to the result
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classification with random forest
random forest: type of ensemble learning:
combination of results of several models

generates many decision trees, each 
using only a subset of the data features

the final classification is the mean of the 
classifications of the decision trees

parameters: n- number of trees and        
m- number of features per tree

m small reduces overfitting and improves 
predictivity

n and m can be obtained by CV
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comparison of classifiers

caution: no free lunch theorem!

RF: confusion matrix
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